Source code for veloxml.base.classification_base

from .estimator_base import EstimatorBase


[docs] class ClassificationBase(EstimatorBase): """ Base class for classification models. This class provides a foundation for classification models, extending `EstimatorBase`. It defines common functionality for fitting a model to training data and making predictions, including probability-based predictions. Attributes: model (object): The underlying classification model instance. Methods: fit(X, Y): Trains the model using the given input data and target values. predict(X): Predicts class labels based on the given input data. predict_proba(X, Y): Predicts class probabilities for the given input data. """
[docs] def __init__(self, model): """ Initializes the classification base class with a given model. Args: model (object): The classification model instance to be used. """ super().__init__(model)
[docs] def fit(self, X, Y): """ Trains the classification model using the given input data and target values. Args: X (array-like): The input features used for training. Y (array-like): The target class labels corresponding to X. Returns: ClassificationBase: The instance itself after fitting the model. """ self.model.fit(X, Y) return self
[docs] def predict(self, X): """ Predicts class labels based on the given input data. Args: X (array-like): The input features for making predictions. Returns: array-like: The predicted class labels. """ return self.model.predict(X)
[docs] def predict_proba(self, X, Y): """ Predicts class probabilities for the given input data. Args: X (array-like): The input features for making probability predictions. Y (array-like): The target class labels (this argument may not be necessary, depending on the implementation of the underlying model). Returns: array-like: The predicted class probabilities. """ return self.model.predict_proba(X, Y)